
MATLAB® Coder™

Getting Started Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ Getting Started Guide
© COPYRIGHT 2011–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
April 2011 Online only New for R2011a
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)
September 2017 Online only Revised for Version 3.4 (Release 2017b)

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Product Overview
1

MATLAB Coder Product Description . 1-2
Key Features . 1-2

About MATLAB Coder . 1-3
When to Use MATLAB Coder . 1-3
What You Can Do with the Project Interface 1-3
When to Use the Command Line (codegen function) 1-3

Code Generation for Embedded Software Applications 1-5

Code Generation for Fixed-Point Algorithms 1-6

Installing Prerequisite Products . 1-7

Related Products . 1-8

Setting Up the C or C++ Compiler . 1-9

Expected Background . 1-10

MATLAB Code for Code Generation Workflow Overview . . 1-11
See Also . 1-11

Tutorials
2

C Code Generation Using the MATLAB Coder App 2-2
Learning Objectives . 2-2
Tutorial Prerequisites . 2-2

vii

Contents

Example: The Kalman Filter . 2-3
Files for the Tutorial . 2-5
Design Considerations When Writing MATLAB Code for Code

Generation . 2-7
Tutorial Steps . 2-8
Key Points to Remember . 2-30
Learn More . 2-30

C Code Generation at the Command Line 2-32
Learning Objectives . 2-32
Tutorial Prerequisites . 2-32
Example: The Kalman Filter . 2-33
Files for the Tutorial . 2-36
Design Considerations When Writing MATLAB Code for Code

Generation . 2-37
Tutorial Steps . 2-38
Key Points to Remember . 2-57
Best Practices Used in This Tutorial 2-57
Learn More . 2-58

MEX Function Generation at the Command Line 2-60
Learning Objectives . 2-60
Tutorial Prerequisites . 2-60
Example: Euclidean Minimum Distance 2-61
Files for the Tutorial . 2-63
Tutorial Steps . 2-64
Key Points to Remember . 2-80
Best Practices Used in This Tutorial 2-81
Where to Learn More . 2-81

Best Practices for Working with MATLAB Coder
3

Recommended Compilation Options for codegen 3-2
-c Generate Code Only . 3-2
-report Generate Code Generation Report 3-2

Testing MEX Functions in MATLAB . 3-3

viii Contents

Comparing C Code and MATLAB Code Using Tiling in the
MATLAB Editor . 3-4

Using Build Scripts . 3-5

Check Code Using the MATLAB Code Analyzer 3-7

Separating Your Test Bench from Your Function Code 3-8

Preserving Your Code . 3-9

File Naming Conventions . 3-10

ix

Product Overview

• “MATLAB Coder Product Description” on page 1-2
• “About MATLAB Coder” on page 1-3
• “Code Generation for Embedded Software Applications” on page 1-5
• “Code Generation for Fixed-Point Algorithms” on page 1-6
• “Installing Prerequisite Products” on page 1-7
• “Related Products” on page 1-8
• “Setting Up the C or C++ Compiler” on page 1-9
• “Expected Background” on page 1-10
• “MATLAB Code for Code Generation Workflow Overview” on page 1-11

1

MATLAB Coder Product Description
Generate C and C++ code from MATLAB code

MATLAB Coder generates readable and portable C and C++ code from MATLAB code. It
supports most of the MATLAB language and a wide range of toolboxes. You can integrate
the generated code into your projects as source code, static libraries, or dynamic libraries.
You can also use the generated code within the MATLAB environment to accelerate
computationally intensive portions of your MATLAB code. MATLAB Coder lets you
incorporate legacy C code into your MATLAB algorithm and into the generated code.

By using MATLAB Coder with Embedded Coder®, you can further optimize code
efficiency and customize the generated code. You can then verify the numerical behavior
of the generated code using software-in-the-loop (SIL) and processor-in-the-loop (PIL)
execution.

Key Features
• ANSI®/ISO® compliant C and C++ code generation
• Code generation support for toolboxes including Communications System Toolbox™,

Computer Vision System Toolbox™, DSP System Toolbox™, Image Processing
Toolbox™, and Signal Processing Toolbox™

• MEX function generation for code verification and acceleration
• Legacy C code integration into MATLAB algorithms and generated code
• Multicore-capable code generation using OpenMP
• Static or dynamic memory-allocation control
• App and equivalent command-line functions for managing code generation projects

1 Product Overview

1-2

About MATLAB Coder

When to Use MATLAB Coder

Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.
• Generate MEX functions from MATLAB code to:

• Accelerate your MATLAB algorithms.
• Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

What You Can Do with the Project Interface

• Specify the MATLAB files from which you want to generate code
• Specify the data types for the inputs to these MATLAB files
• Select an output type:

• MEX function
• C/C++ Static Library
• C/C++ Dynamic Library
• C/C++ Executable

• Configure build settings to customize your environment for code generation
• Open the code generation report to view build status, generated code, and compile-

time information for the variables and expressions in your MATLAB code

See Also

• “Set Up a MATLAB Coder Project”
• “C Code Generation Using the MATLAB Coder App” on page 2-2

When to Use the Command Line (codegen function)

Use the command line if you use build scripts to specify input parameter types and code
generation options.

 About MATLAB Coder

1-3

See Also

• The codegen function reference page
• “C Code Generation at the Command Line” on page 2-32
• “MEX Function Generation at the Command Line” on page 2-60

1 Product Overview

1-4

Code Generation for Embedded Software Applications
The Embedded Coder product extends the MATLAB Coder product with features that
you can use for embedded software development. With the Embedded Coder product, you
can generate code that has the clarity and efficiency of professional handwritten code.
For example, you can:

• Generate code that is compact and executes efficiently for embedded systems.
• Customize the appearance of the generated code.
• Optimize generated code for a specific target environment.
• Integrate existing applications, functions, and data.
• Enable tracing, reporting, and testing options that facilitate code verification

activities.

 Code Generation for Embedded Software Applications

1-5

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Designer product, you can generate:

• MEX functions to accelerate fixed-point algorithms.
• Fixed-point code that provides a bit-wise match to MEX function results.

1 Product Overview

1-6

Installing Prerequisite Products
To generate C and C++ code using MATLAB Coder, you must install the following
products:

• MATLAB

Note If MATLAB is installed on a path that contains non 7-bit ASCII characters, such
as Japanese characters, MATLAB Coder might not work because it cannot locate code
generation library functions.

• MATLAB Coder
• C or C++ compiler

For most platforms, a default compiler is supplied with MATLAB.

MATLAB Coder automatically locates and uses a supported installed compiler. For
the current list of supported compilers, see Supported and Compatible Compilers on
the MathWorks® Web site.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

For instructions on installing MathWorks products, see the MATLAB installation
documentation for your platform. If you have installed MATLAB and want to check
which other MathWorks products are installed, enter ver in the MATLAB Command
Window.

 Installing Prerequisite Products

1-7

http://www.mathworks.com/support/compilers/current_release/

Related Products
• Embedded Coder
• Simulink® Coder

1 Product Overview

1-8

Setting Up the C or C++ Compiler
MATLAB Coder automatically locates and uses a supported installed compiler. For the
current list of supported compilers, see Supported and Compatible Compilers on the
MathWorks Web site.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB). If you generate C++ code, see “Choose a C++ Compiler” (MATLAB).

 Setting Up the C or C++ Compiler

1-9

http://www.mathworks.com/support/compilers/current_release/

Expected Background
You should be familiar with :

• MATLAB software
• MEX functions

For more information, see “Introducing MEX Files” (MATLAB).
• C/C++ programming concepts

To generate C code on embedded targets, you should also be familiar with how to re-
compile the generated code in the target environment.

To integrate the generated code into external applications, you should be familiar with
the C/C++ compilation and linking process.

1 Product Overview

1-10

MATLAB Code for Code Generation Workflow Overview

See Also
• “Set Up a MATLAB Coder Project”
• “Workflow for Preparing MATLAB Code for Code Generation”
• “Workflow for Testing MEX Functions in MATLAB”
• “Code Generation Workflow”
• “Workflow for Accelerating MATLAB Algorithms”
• “Optimization Strategies”
• “Accelerate MATLAB Algorithms”

 MATLAB Code for Code Generation Workflow Overview

1-11

Tutorials

• “C Code Generation Using the MATLAB Coder App” on page 2-2
• “C Code Generation at the Command Line” on page 2-32
• “MEX Function Generation at the Command Line” on page 2-60

2

C Code Generation Using the MATLAB Coder App
In this section...
“Learning Objectives” on page 2-2
“Tutorial Prerequisites” on page 2-2
“Example: The Kalman Filter” on page 2-3
“Files for the Tutorial” on page 2-5
“Design Considerations When Writing MATLAB Code for Code Generation” on page 2-
7
“Tutorial Steps” on page 2-8
“Key Points to Remember” on page 2-30
“Learn More” on page 2-30

Learning Objectives

In this tutorial, you learn how to:

• Create and set up a MATLAB Coder project.
• Define function input properties.
• Check for code generation readiness and run-time issues.
• Generate C code from your MATLAB code.
• Specify variable-size inputs when generating code.
• Specify code generation properties.
• Generate a code generation report that you can use to debug your MATLAB code and

verify that it is suitable for code generation.

Tutorial Prerequisites

Required Products

This tutorial requires the following products:

• MATLAB
• MATLAB Coder

2 Tutorials

2-2

• C compiler

For most platforms, a default compiler is supplied with MATLAB.

MATLAB Coder locates and uses a supported installed compiler. See Supported and
Compatible Compilers on the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

For instructions on installing MathWorks products, see the MATLAB installation
documentation for your platform. If you have installed MATLAB and want to check
which other MathWorks products are installed, at the MATLAB prompt, enter ver.

Example: The Kalman Filter
• “Description” on page 2-3
• “Algorithm” on page 2-3
• “Filtering Process” on page 2-4
• “Reference” on page 2-5

Description

You do not have to be familiar with the algorithm in the example to complete the
tutorial.

The Kalman filter estimates the position of an object moving in a two-dimensional space
from a series of noisy inputs based on past positions. The position vector has two
components, x and y, indicating its horizontal and vertical coordinates.

Kalman filters have a wide range of applications, including control, signal processing,
and image processing; radar and sonar; and financial modeling. They are recursive filters
that estimate the state of a linear dynamic system from a series of incomplete or noisy
measurements. The Kalman filter algorithm relies on the state-space representation of
filters. It uses a set of variables stored in the state vector to characterize completely the
behavior of the system. It updates the state vector linearly and recursively using a state
transition matrix and a process noise estimate.

Algorithm

This section describes the Kalman filter algorithm that this example uses.

 C Code Generation Using the MATLAB Coder App

2-3

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

The algorithm predicts the position of a moving object based on its past positions using a
Kalman filter estimator. It estimates the present position by updating the Kalman state
vector. The Kalman state vector includes the position (x and y), velocity (Vx and Vy), and
acceleration (Ax and Ay) of the moving object. The Kalman state vector, x_est, is a
persistent variable.

% Initial conditions
persistent x_est p_est
if isempty(x_est)
 x_est = zeros(6, 1);
 p_est = zeros(6, 6);
end

The algorithm initializes x_est to an empty 6x1 column vector. It updates x_est each
time the filter is used.

The Kalman filter uses the laws of motion to estimate the new state:
X X Vx dt

Y Y Vy dt

Vx Vx Ax dt

Vy Vy Ay dt

= +

= +

= +

= +

0

0

0

0

.

.

.

.

The state transition matrix A, contains the coefficient values of x, y, Vx, Vy, Ax, and Ay. A
captures these laws of motion.

% Initialize state transition matrix
dt=1;
A=[1 0 dt 0 0 0;...
 0 1 0 dt 0 0;...
 0 0 1 0 dt 0;...
 0 0 0 1 0 dt;...
 0 0 0 0 1 0 ;...
 0 0 0 0 0 1];

Filtering Process

The filtering process has two phases:

• Predicted state and covariance

The Kalman filter uses the previously estimated state, x_est, to predict the current
state, x_prd. The predicted state and covariance are calculated in:

2 Tutorials

2-4

% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;

• Estimation

The filter also uses the current measurement, z, and the predicted state, x_prd, to
estimate a closer approximation of the current state. The estimated state and
covariance are calculated in:

% Measurement matrix
H = [1 0 0 0 0 0; 0 1 0 0 0 0];
Q = eye(6);
R = 1000 * eye(2);

% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';

% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;

% Compute the estimated measurements
y = H * x_est;

Reference

Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, Inc.,
1996.

Files for the Tutorial
• “About the Tutorial Files” on page 2-5
• “Location of Files” on page 2-6
• “Names and Descriptions of Files” on page 2-6

About the Tutorial Files

The tutorial uses the following files:

• Example MATLAB code files for each step of the tutorial.

 C Code Generation Using the MATLAB Coder App

2-5

Throughout this tutorial, you work with MATLAB files that contain a simple Kalman
filter algorithm.

• Test files that:

• Perform the preprocessing functions.
• Call the Kalman filter.
• Perform the post-processing functions.

• A MAT-file that contains input data.

Location of Files

The tutorial files are available in the following folder: docroot\toolbox\coder
\examples\kalman. Copy these files to a local folder. For instructions, see “Copying
Files Locally” on page 2-39.

Names and Descriptions of Files
Type Name Description
Function
code

kalman01.m Baseline MATLAB implementation of a
scalar Kalman filter. In the example, you
modify this file to make it suitable for code
generation and for use with frame-based
and packet-based inputs.

kalman02.m The kalman01 function after modification
to make it suitable for code generation.

kalman03.m The kalman01 function after modification
to make it suitable for frame-based and
packet-based inputs.

Test scripts test01_ui.m Tests the scalar Kalman filter and plots the
trajectory.

test02_ui.m Tests the frame-based Kalman filter.
test03_ui.m Tests the variable-size (packet-based)

Kalman filter.
MAT-file position.mat Contains the input data used by the

algorithm.
Plot
function

plot_trajectory.m Plots the trajectory of the object and the
Kalman filter estimated position.

2 Tutorials

2-6

Design Considerations When Writing MATLAB Code for Code
Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, consider the following:

• Data types

C and C++ use static typing. Before you use your variables, to determine the types of
your variables, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that
varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense of
time to manage the memory. With static memory, you get the best speed, but with
higher memory usage. Most MATLAB code takes advantage of the dynamic-sizing
features in MATLAB. Therefore, dynamic memory allocation typically enables you to
generate code from existing MATLAB code without much modification. Dynamic
memory allocation also allows some programs to compile even when the software
cannot find upper bounds.

• Speed

Because embedded applications run in real time, the code must be fast enough to
meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. The default compiler that MathWorks supplies
with MATLAB for Windows® platforms is not a good compiler for performance.

• Consider disabling run-time checks.

By default, for safety, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. These checks can result in more
generated code and slower simulation. Disabling run-time checks can result in

 C Code Generation Using the MATLAB Coder App

2-7

streamlined generated code and faster simulation. Disable these checks only if you
have verified that array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”
• “Control Run-Time Checks”
• “Code Generation for Variable-Size Arrays”

Tutorial Steps
• “Copy Files to Local Working Folder” on page 2-8
• “Run the Original MATLAB Code” on page 2-9
• “Set Up Your C Compiler” on page 2-11
• “Prepare MATLAB Code for Code Generation” on page 2-12
• “Make the MATLAB Code Suitable for Code Generation” on page 2-13
• “Opening the MATLAB Coder App” on page 2-14
• “Select Source Files” on page 2-15
• “Define Input Types” on page 2-16
• “Check for Run-Time Issues” on page 2-17
• “Generate C Code” on page 2-20
• “Reviewing the Finish Workflow Page” on page 2-21
• “Comparing the Generated C Code to Original MATLAB Code” on page 2-22
• “Modifying the Filter to Accept a Fixed-Size Input” on page 2-23
• “Use the Filter to Accept a Variable-Size Input” on page 2-28

Copy Files to Local Working Folder

Copy the tutorial files to a local working folder:

1 Create a local solutions folder, for example, c:\coder\kalman\solutions.
2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB

command prompt, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

2 Tutorials

2-8

3 Copy the contents of the kalman subfolder to your local solutions folder, specifying
the full path name of the solutions folder:

copyfile('kalman', 'solutions')

Your solutions folder now contains a complete set of solutions for the tutorial. If
you do not want to perform the steps for each task in the tutorial, you can view the
solutions to see the modified code.

4 Create a local work folder, for example, c:\coder\kalman\work.
5 Copy the following files from your solutions folder to your work folder.

• kalman01.m
• position.mat
• Test script test01_ui.m
• plot_trajectory.m

Your work folder now contains the files to get started with the tutorial.

Run the Original MATLAB Code

In this tutorial, you work with a MATLAB function that implements a Kalman filter
algorithm. The algorithm predicts the position of a moving object based on its past
positions. Before generating C code for this algorithm, you make the MATLAB version
suitable for code generation and generate a MEX function. You then test the resulting
MEX function to validate the functionality of the modified code. As you work through the
tutorial, you refine the design of the algorithm to accept variable-size inputs.

First, use the script test01_ui.m to run the original MATLAB function to see how the
Kalman filter algorithm works. This script loads the input data and calls the Kalman
filter algorithm to estimate the location. It then calls a plot function, plot_trajectory,
which plots the trajectory of the object and the Kalman filter estimated position.

1 Set your MATLAB current folder to the work folder that contains your files for this
tutorial. At the MATLAB command prompt, enter:

cd work

where work is the full path name of the work folder containing your files. For more
information, see “Files and Folders that MATLAB Accesses” (MATLAB).

 C Code Generation Using the MATLAB Coder App

2-9

2 At the MATLAB command prompt, enter:

test01_ui

The test script runs and plots the trajectory of the object in blue and the Kalman
filter estimated position in green. Initially, you see that it takes a short time for the
estimated position to converge with the actual position of the object. Then three
sudden shifts in position occur—each time the Kalman filter readjusts and tracks
the object after a few iterations.

2 Tutorials

2-10

Set Up Your C Compiler

MATLAB Coder locates and uses a supported installed compiler. See Supported and
Compatible Compilers on the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

 C Code Generation Using the MATLAB Coder App

2-11

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Prepare MATLAB Code for Code Generation

Before generating code, prepare your MATLAB code for code generation:

• To check for coding issues, use the Code Analyzer in the MATLAB Editor.
• To screen the code for unsupported features and functions, use the code generation

readiness tool.
• To identify build and run-time issues, generate a MEX function from your entry-point

functions. Run the MEX function.

During MATLAB code design, to prepare your code for code generation, you can use tools
outside of the MATLAB Coder app. When you use the MATLAB Coder app to generate
code, the app screens your code for coding issues and code generation readiness. If you
perform the Check for Run-Time Issues step, the app generates and runs a MEX
function. If the app finds issues, it displays warning and error messages. If you click a
message, the app highlights the problem code in a pane where you can edit the code.

Checking for Issues at Design Time

There are two tools that help you detect code generation issues at design time: the Code
Analyzer and the code generation readiness tool.

Use the Code Analyzer in the MATLAB Editor to check for coding issues at design time.
The Code Analyzer continuously checks your code as you enter it. It reports issues and
recommends modifications to maximize performance and maintainability.

To use the Code Analyzer to identify warnings and errors specific to MATLAB for code
generation, add the %#codegen directive to your MATLAB file. A complete list of
MATLAB for code generation Code Analyzer messages is available in the MATLAB Code
Analyzer preferences. See “Running the Code Analyzer Report” (MATLAB).

Note The Code Analyzer might not detect all code generation issues. After eliminating
the errors or warnings that the Code Analyzer detects, compile your code with MATLAB
Coder to determine if the code has other compliance issues.

The code generation readiness tool screens MATLAB code for features and functions that
code generation does not support. The tool provides a report that lists the source files
that contain unsupported features and functions. It also gives an indication of the
amount of work to make the MATLAB code suitable for code generation.

2 Tutorials

2-12

You can access the code generation readiness tool in the following ways:

• In the current folder browser — right-click a MATLAB file
• Using the command-line interface — use the coder.screener function.
• Using the MATLAB Coder app — after you specify your entry-point files, the app runs

the Code Analyzer and code generation readiness tool.

Checking for Issues at Code Generation Time

You can use MATLAB Coder to check for issues at code generation time. MATLAB Coder
checks that your MATLAB code is suitable for code generation.

When MATLAB Coder detects errors or warnings, it generates an error report that
describes the issues and provides links to the problematic MATLAB code. For more
information, see “Code Generation Reports”.
Checking for Issues at Run Time

You can use MATLAB Coder to generate a MEX function and check for issues at run
time. The MEX function generated for your MATLAB functions includes run-time checks.
Disabling run-time checks and extrinsic calls usually results in streamlined generated
code and faster simulation. Disabling run-time checks allows bugs in your code to cause
MATLAB to fail. For more information, see “Control Run-Time Checks”.

If you encounter run-time errors in your MATLAB functions, a run-time stack appears in
the Command Window. See “Debug Run-Time Errors”.

Make the MATLAB Code Suitable for Code Generation

To begin the process of making your MATLAB code suitable for code generation, you
work with the file kalman01.m. This code is a MATLAB version of a scalar Kalman filter
that estimates the state of a dynamic system from a series of noisy measurements.

1 Set your MATLAB current folder to the work folder that contains your files for this
tutorial. At the MATLAB command prompt, enter:

cd work

work is the full path of the work folder containing your files. See “Files and Folders
that MATLAB Accesses” (MATLAB).

2 Open kalman01.m in the MATLAB Editor. At the MATLAB command prompt,
enter:

 C Code Generation Using the MATLAB Coder App

2-13

edit kalman01.m

Tip Before modifying your code, it is a best practice to back up your code.

The file opens in the MATLAB Editor. The Code Analyzer message indicator in the
top right corner of the MATLAB Editor is green. The analyzer did not detect errors,
warnings, or opportunities for improvement in the code.

3 Turn on MATLAB for code generation error checking. After the function declaration,
add the %#codegen directive.

function y = kalman01(z) %#codegen

The Code Analyzer message indicator remains green, indicating that it has not
detected code generation issues.

For more information about using the Code Analyzer, see “Running the Code
Analyzer Report” (MATLAB).

4 Save the file.

You are now ready to compile your code using the MATLAB Coder app.

Opening the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB
Coder app icon.

The app opens the Select Source Files page.

2 Tutorials

2-14

Select Source Files

1 On the Select Source Files page, enter or select the name of the entry-point
function kalman01. The app creates a project with the default name kalman01.prj
in the current folder.

2 Click Next to go to the Define Input Types step. The app analyzes the function for
coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In
this example, because the app does not detect issues, it opens the Define Input
Types page.

 C Code Generation Using the MATLAB Coder App

2-15

Define Input Types

Because C uses static typing, MATLAB Coder must determine the properties of all
variables in the MATLAB files at compile time. Therefore, you must specify the
properties of all function inputs. To specify input properties, you can:

• Instruct the app to determine input properties using code that you provide.
• Specify properties directly.

In this example, to define the properties of the input z, specify the test file test01_ui.m
that MATLAB Coder can use to define types automatically for z:

2 Tutorials

2-16

1 Enter or select the test file test01_ui.m.
2 Click Autodefine Input Types.

The test file, test01_ui.m, calls the entry-point function, kalman01.m, with the
expected input types. The test file runs. The app infers that input z is double(2x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it is
a best practice to perform this step. Using this step, you can detect and fix run-time
errors that are harder to diagnose in the generated C code. By default, the MEX function
includes memory integrity checks. These checks perform array bounds and dimension
checking. The checks detect violations of memory integrity in code generated for
MATLAB functions. For more information, see “Control Run-Time Checks”.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues
arrow .

 C Code Generation Using the MATLAB Coder App

2-17

2 In the Check for Run-Time Issues dialog box, specify a test file or enter code that
calls the entry-point file with example inputs. For this example, use the test file
test01_ui that you used to define the input types. Make sure that the dialog box
specifies the test01_ui script.

3 Click Check for Issues.

The app generates a MEX function. It runs the test script test01_ui replacing calls
to kalman01 with calls to the generated MEX. If the app detects issues during the
MEX function generation or execution, it provides warning and error messages. You
can click these messages to navigate to the problematic code and fix the issue. In this
example, the app does not detect issues.

2 Tutorials

2-18

The test script plots the output from generated MEX version of kalman01. The MEX
function has the same functionality as the original kalman01 function.

4 By default, the app collects line execution counts. These counts help you to see how
well the test file, test01_ui exercised the kalman01 function. To view line
execution counts, click View MATLAB line execution counts. The app editor
displays a color-coded bar to the left of the code. To extend the color highlighting
over the code and to see line execution counts, place your cursor over the bar.

 C Code Generation Using the MATLAB Coder App

2-19

The orange color indicates that lines 26 and 27 executed one time. This behavior is
expected because this code initializes a persistent variable. A particular shade of
green indicates that the line execution count for this code falls in a certain range. In
this case, the code executes 300 times. For information about how to interpret line
execution counts and turn off collection of the counts, see “Collect and View Line
Execution Counts for Your MATLAB Code”.

5 Click Next to go to the Generate Code step.

Generate C Code

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Static Library (.lib) and

Language to C. Use the default values for the other project build configuration
settings. Different project settings are available for MEX and C/C++ output types.
When you switch between MEX and C/C++ code generation, verify these settings.

2 Tutorials

2-20

3 Click Generate.

MATLAB Coder generates a standalone C static library kalman01 in the work
\codegen\lib\kalman01. work is the folder that contains your tutorial files. The
MATLAB Coder app indicates that code generation succeeded. It displays the source
MATLAB files and generated output files on the left side of the page. On the
Variables tab, it displays information about the MATLAB source variables. On the
Target Build Log tab, it displays the build log, including compiler warnings and
errors. By default, in the code window, the app displays the C source code file,
kalman01.c. To view a different file, in the Source Code or Output Files pane,
click the file name.

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

Reviewing the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to generated output.

 C Code Generation Using the MATLAB Coder App

2-21

Comparing the Generated C Code to Original MATLAB Code

To compare your generated C code to the original MATLAB code, open the C file,
kalman01.c, and the kalman01.m file in the MATLAB Editor.

Here are some important points about the generated C code:

• The function signature is:

void kalman01(const double z[2], double y[2])

2 Tutorials

2-22

z corresponds to the input z in your MATLAB code. The size of z is 2, which
corresponds to the total size (2 x 1) of the example input you used when you compiled
your MATLAB code.

• You can easily compare the generated C code to your original MATLAB code. The code
generator preserves your function name and comments. When possible, the software
preserves your variable names.

Note If a variable in your MATLAB code is set to a constant value, it does not appear
as a variable in the generated C code. Instead, the generated C code contains the
actual value of the variable.

Modifying the Filter to Accept a Fixed-Size Input

The filter uses a simple batch process that accepts one input at a time. You must call the
function repeatedly for each input. In this part of the tutorial, you learn how to modify
the algorithm to accept a fixed-sized input. This modification makes the algorithm
suitable for frame-based processing.
Modify Your MATLAB Code

The original filter algorithm accepts only one input. You can modify the algorithm to
process a vector containing more than one input. Modify the algorithm to find the length
of the vector. To call the filter code for each element in the vector, call the filter algorithm
in a for-loop.

1 Open kalman01.m in the MATLAB Editor.

edit kalman01.m
2 Add a for-loop around the filter code.

a Before the comment

% Predicted state and covariance

insert:

for i=1:size(z,2)
b After the comment

% Compute the estimated measurements
y = H * x_est;

 C Code Generation Using the MATLAB Coder App

2-23

insert:

end

Your filter code now looks like this code:

for i=1:size(z,2)
 % Predicted state and covariance
 x_prd = A * x_est;
 p_prd = A * p_est * A' + Q;

 % Estimation
 S = H * p_prd' * H' + R;
 B = H * p_prd';
 klm_gain = (S \ B)';

 % Estimated state and covariance
 x_est = x_prd + klm_gain * (z - H * x_prd);
 p_est = p_prd - klm_gain * H * p_prd;

 % Compute the estimated measurements
 y = H * x_est;
end

3 Modify the line that calculates the estimated state and covariance to use the ith
element of input z.

Change

x_est = x_prd + klm_gain * (z - H * x_prd);

to

x_est = x_prd + klm_gain * (z(:,i) - H * x_prd);
4 Modify the line that computes the estimated measurements to append the result to

the ith element of the output y.

Change

y = H * x_est;

to

y(:, 1) = H * x_est;

2 Tutorials

2-24

The Code Analyzer message indicator in the top right turns red to indicate that the
Code Analyzer detects an error. The Code Analyzer underlines the offending code in
red and places a red marker to the right.

5 Move your cursor over the red marker to view the error.

The Code Analyzer reports that code generation requires that you fully define
variable y before subscripting it.

Why Preallocate the Outputs?

Preallocate the output y because code generation does not support increasing the
size of an array through indexing. Repeatedly expanding the size of an array over
time can adversely affect the performance of your program. See “Preallocating
Memory” (MATLAB).

6 To address the error, preallocate memory for the output y which is the same size as
the input z. Before the for-loop, add this code:

 % Pre-allocate output signal:
 y = zeros(size(z));

 C Code Generation Using the MATLAB Coder App

2-25

You no longer see the red error marker and the Code Analyzer message indicator in
the top right edge of the code turns green. The Code Analyzer does not detect errors
or warnings.

For more information about using the Code Analyzer, see “Running the Code
Analyzer Report” (MATLAB).

7 Save the file.

Generating C Code for Your Modified Algorithm

The modified algorithm expects fixed-size input. Define the input types for the modified
kalman01 function. Use the test file test02_ui.m to define input types for kalman01.
This script sets the frame size to 10 and calculates the number of frames in the example
input. It then calls the Kalman filter and plots the results for each frame.

1
To go to the Define Input Types step, expand the workflow steps and click
Define Input Types.

2 To delete the type information for z, above the input argument type definitions, click

.

3 To specify the test file to use for defining input types, enter or select test02_ui.m.
4 Click Autodefine Input Types.

The test file runs. The app infers that the type of z is double(2x10).
5 Click Next to go to the Check for Run-Time Issues step.
6 To open the Check for Issues dialog box, click the Check for Issues arrow .
7 On the Check for Run-Time Issues page, make sure that the dialog box specifies

the test02_ui.m file.

2 Tutorials

2-26

8 Click Check for Issues.

The app generates a MEX function. It runs the test script test02_ui replacing calls
to kalman-01 with calls to the generated MEX. If the app detects issues during the
MEX function generation or execution, it provides warning and error messages. You
can click these messages to navigate to the problematic code and fix the issue. In this
example, the app does not detect issues. The test script plots the output from
generated the MEX version of kalman01. The MEX function has the same
functionality as the original kalman01 function.

9 Click Next to go to the Generate Code step.
10 To open the Generate Code dialog box, click the Generate arrow .
11 Set Build type to Source Code and Language to C.

Selecting Source Code instructs MATLAB Coder to generate code without invoking
the make command. If you use this option, MATLAB Coder does not generate
compiled object code. This option saves you time during the development cycle when
you want to iterate rapidly between modifying MATLAB code and inspecting
generated C code.

12 Click Generate.

MATLAB Coder generates C code in the work\codegen\lib\kalman01 folder.
work is the folder that contains your tutorial files. The MATLAB Coder app
indicates that code generation succeeded. It displays the source MATLAB files and
generated output files on the left side of the page. On the Variables tab, it displays
information about the MATLAB source variables. On the Target Build Log, it
displays the build log, including compiler warnings and errors. By default, the app
displays the C source code file, kalman01.c. To view a different file, in the Source
Code or Output Files pane, click the file name.

13 View the generated C code.

Some important points about the generated C code are:

• The function signature is now:

void kalman01(const double z[20], double y[20])

The sizes of z and y are now 20, which corresponds to the size of the example
input z (2x10) used to compile your MATLAB code.

 C Code Generation Using the MATLAB Coder App

2-27

• The filtering now takes place in a for-loop. The for-loop iterates over all 10
inputs.

for(i = 0; i < 10; i++)
{
 /* Predicted state and covariance */ ...

Use the Filter to Accept a Variable-Size Input

To show that the algorithm is suitable for processing packets of data of varying size, test
your algorithm with variable-size inputs.
Test the Algorithm with Variable-Size Inputs

Use the test script test03_ui.m to test the filter with variable-size inputs. The test
script calls the filter algorithm in a loop, passing a different size input to the filter each
time. Each time through the loop, the test script calls the plot_trajectory function for
every position in the input.

To run the test script, at the MATLAB command prompt, enter:

test03_ui

The test script runs and plots the trajectory of the object and the Kalman filter estimated
position.
Generating C Code for Variable-Size Inputs

1
To go to the Define Input Types step, expand the workflow steps and click
Define Input Types.

To specify the test file to use for defining input types, enter or select test03_ui.m.
2 To delete the type information for z, above the input argument type definitions, click

.
3 Click Autodefine Input Types.

The test file runs. The app infers that the input type of z is double(2x:100). The :
in front of the second dimension indicates that this dimension is variable size. The
test file calls kalman01 multiple times with different-size inputs. Therefore, the app

2 Tutorials

2-28

takes the union of the inputs and infers that the inputs are variable size. The upper
bound is equal to the size of the largest input.

4 Click Next to go to the Check for Run-Time Issues step.
5 To open the Check for Issues dialog box, click the Check for Issues arrow .
6 On the Check for Run-Time Issues page, make sure that the dialog box specifies

the test03_ui.m file.
7 Click Check for Issues.

The app builds a MEX file and runs it replacing calls to kalman01 with calls to the
MEX function. The app indicates that it does not detect issues.

8 Click Next to go to the Generate Code step.
9 To open the Generate Code dialog box, click the Generate arrow .
10 Set Build type to Source Code and Language to C.

Selecting Source Code instructs MATLAB Coder to generate code without invoking
the make command. If you use this option, MATLAB Coder does not generate
compiled object code. This option saves you time during the development cycle when
you want to iterate rapidly between MATLAB code modification code and inspection
of generated C code

11 Click Generate.

MATLAB Coder generates C code in the work\codegen\lib\kalman01 folder.
work is the folder that contains your tutorial files. The MATLAB Coder app
indicates that code generation succeeded. It displays the source MATLAB files and
generated output files on the left side of the page. On the Variables tab, it displays
information about the MATLAB source variables. On the Target Build Log, it
displays the build log, including compiler warnings and errors. By default, the app
displays the C source code file, kalman01.c. To view a different file, in the Source
Code or Output Files pane, click the file name.

12 View the generated C code.

Some important points about the generated C code are:

• The generated C code can process inputs from 2 x 1 to 2 x 100. The function
signature is now:
void kalman01(const double z_data[], const int z_size[2], double y_data[], int y_size[2])

 C Code Generation Using the MATLAB Coder App

2-29

Because y and z are variable size, the generated code contains two pieces of
information about each of them: the data and the actual size of the sample. For
example, for variable z, the generated code contains:

• The data z_data[].
• z_size[2], which contains the actual size of the input data. This information

varies each time the filter is called.
• To maximize efficiency, the actual size of the input data z_size is used when

calculating the estimated position. The filter processes only the number of
samples available in the input.

 for (i = 0; i <= z_size[1]; i++) {
 /* Predicted state and covariance */
 for(k = 0; k < 6; k++) {
 ...

Key Points to Remember
• Before you modify your MATLAB code, back it up.

Use test scripts to separate the pre- and post-processing from the core algorithm.
• If you have a test file that calls the entry-point function with the required class, size,

and complexity, use the Autodefine Input Types option to specify input
parameters.

• Perform the Check for Run-Time Issues step to check for run-time errors.

Learn More
• “Next Steps” on page 2-30
• “MathWorks Online” on page 2-31

Next Steps
To See
Learn how to integrate your MATLAB code with
Simulink models

“Track Object Using MATLAB Code” (Simulink)

Learn more about using MATLAB for code
generation

“MATLAB Programming for Code Generation”

2 Tutorials

2-30

To See
Use variable-size data “Code Generation for Variable-Size Arrays”
Speed up fixed-point MATLAB code fiaccel
Integrate custom C code into MATLAB code and
generate embeddable code

“Specify External File Locations”

Integrate custom C code into a MATLAB
function for code generation

coder.ceval

MathWorks Online

For additional information and support, visit the MATLAB Coder page on the
MathWorks website at:

www.mathworks.com/products/matlab-coder

 C Code Generation Using the MATLAB Coder App

2-31

https://www.mathworks.com/products/matlab-coder/

C Code Generation at the Command Line
In this section...
“Learning Objectives” on page 2-32
“Tutorial Prerequisites” on page 2-32
“Example: The Kalman Filter” on page 2-33
“Files for the Tutorial” on page 2-36
“Design Considerations When Writing MATLAB Code for Code Generation” on page 2-
37
“Tutorial Steps” on page 2-38
“Key Points to Remember” on page 2-57
“Best Practices Used in This Tutorial” on page 2-57
“Learn More” on page 2-58

Learning Objectives
In this tutorial, you will learn how to:

• Automatically generate a MEX function from your MATLAB code and use this MEX
function to validate your algorithm in MATLAB before generating C code.

• Automatically generate C code from your MATLAB code.
• Define function input properties at the command line.
• Specify variable-size inputs when generating code.
• Specify code generation properties.
• Generate a code generation report that you can use to debug your MATLAB code and

verify that it is suitable for code generation.

Tutorial Prerequisites
• “What You Need to Know” on page 2-32
• “Required Products” on page 2-33

What You Need to Know

To complete this tutorial, you should have basic familiarity with MATLAB software.

2 Tutorials

2-32

Required Products

To complete this tutorial, you must install the following products:

• MATLAB
• MATLAB Coder
• C compiler

For most platforms, a default compiler is supplied with MATLAB.

MATLAB Coder automatically locates and uses a supported installed compiler. For
the current list of supported compilers, see Supported and Compatible Compilers on
the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

For instructions on installing MathWorks products, see the MATLAB installation
documentation for your platform. If you have installed MATLAB and want to check
which other MathWorks products are installed, enter ver in the MATLAB Command
Window.

Example: The Kalman Filter
• “Description” on page 2-33
• “Algorithm” on page 2-34
• “Filtering Process” on page 2-35
• “Reference” on page 2-35

Description

This section describes the example used by the tutorial. You do not have to be familiar
with the algorithm to complete the tutorial.

The example for this tutorial uses a Kalman filter to estimate the position of an object
moving in a two-dimensional space from a series of noisy inputs based on past positions.
The position vector has two components, x and y, indicating its horizontal and vertical
coordinates.

Kalman filters have a wide range of applications, including control, signal and image
processing; radar and sonar; and financial modeling. They are recursive filters that

 C Code Generation at the Command Line

2-33

http://www.mathworks.com/support/compilers/current_release/

estimate the state of a linear dynamic system from a series of incomplete or noisy
measurements. The Kalman filter algorithm relies on the state-space representation of
filters and uses a set of variables stored in the state vector to characterize completely the
behavior of the system. It updates the state vector linearly and recursively using a state
transition matrix and a process noise estimate.

Algorithm

This section describes the algorithm of the Kalman filter and is implemented in the
MATLAB version of the filter supplied with this tutorial.

The algorithm predicts the position of a moving object based on its past positions using a
Kalman filter estimator. It estimates the present position by updating the Kalman state
vector, which includes the position (x and y), velocity (Vx and Vy), and acceleration (Ax
and Ay) of the moving object. The Kalman state vector, x_est, is a persistent variable.

% Initial conditions
persistent x_est p_est
if isempty(x_est)
 x_est = zeros(6, 1);
 p_est = zeros(6, 6);
end

x_est is initialized to an empty 6x1 column vector and updated each time the filter is
used.

The Kalman filter uses the laws of motion to estimate the new state:
X X Vx dt

Y Y Vy dt

Vx Vx Ax dt

Vy Vy Ay dt

= +

= +

= +

= +

0

0

0

0

.

.

.

.

These laws of motion are captured in the state transition matrix A, which is a matrix
that contains the coefficient values of x, y, Vx, Vy, Ax, and Ay.
% Initialize state transition matrix
dt=1;
A=[1 0 dt 0 0 0;...
 0 1 0 dt 0 0;...
 0 0 1 0 dt 0;...
 0 0 0 1 0 dt;...
 0 0 0 0 1 0 ;...
 0 0 0 0 0 1];

2 Tutorials

2-34

Filtering Process

The filtering process has two phases:

• Predicted state and covariance

The Kalman filter uses the previously estimated state, x_est, to predict the current
state, x_prd. The predicted state and covariance are calculated in:

% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;

• Estimation

The filter also uses the current measurement, z, and the predicted state, x_prd, to
estimate a closer approximation of the current state. The estimated state and
covariance are calculated in:

% Measurement matrix
H = [1 0 0 0 0 0; 0 1 0 0 0 0];
Q = eye(6);
R = 1000 * eye(2);

% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';

% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;

% Compute the estimated measurements
y = H * x_est;

Reference

Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, Inc.,
1996.

 C Code Generation at the Command Line

2-35

Files for the Tutorial

• “About the Tutorial Files” on page 2-36
• “Location of Files” on page 2-36
• “Names and Descriptions of Files” on page 2-36

About the Tutorial Files

The tutorial uses the following files:

• Example MATLAB code files for each step of the tutorial.

Throughout this tutorial, you work with MATLAB files that contain a simple Kalman
filter algorithm.

• Build scripts that you use to compile your function code.
• Test files that:

• Perform the preprocessing functions.
• Call the Kalman filter.
• Perform the post-processing functions.

• A MAT-file that contains input data.

Location of Files

The tutorial files are available in the following folder: docroot\toolbox\coder
\examples\kalman. To run the tutorial, you must copy these files to a local folder. For
instructions, see “Copying Files Locally” on page 2-39.

Names and Descriptions of Files
Type Name Description
Function
code

kalman01.m Baseline MATLAB implementation of a
scalar Kalman filter.

kalman02.m Version of the original algorithm that is
suitable for code generation.

kalman03.m Kalman filter suitable for use with frame-
based and packet-based inputs.

2 Tutorials

2-36

Type Name Description
Build
scripts

build01.m Generates MEX function for the original
Kalman filter.

build02.m Generates C code for the original Kalman
filter.

build03.m Generates C code for the frame-based
Kalman filter.

build04.m Generates C code for the variable-size
(packet-based) Kalman filter.

Test scripts test01.m Tests the scalar Kalman filter and plots the
trajectory.

test02.m Tests MEX function for the original
Kalman filter and plots the trajectory.

test03.m Tests the frame-based Kalman filter.
test04.m Tests the variable-size (packet-based)

Kalman filter.
MAT-file position.mat Contains the input data used by the

algorithm.
Plot
function

plot_trajectory.m Plots the trajectory of the object and the
Kalman filter estimated position.

Design Considerations When Writing MATLAB Code for Code
Generation
When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use,
MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that
varies in size at run time.

 C Code Generation at the Command Line

2-37

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense of
time to manage the memory. With static memory, you get the best speed, but with
higher memory usage. Most MATLAB code takes advantage of the dynamic sizing
features in MATLAB, therefore dynamic memory allocation typically enables you to
generate code from existing MATLAB code without much modification. Dynamic
memory allocation also allows some programs to compile even when upper bounds
cannot be found.

• Speed

Because embedded applications must run in real time, the code must be fast enough
to meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. The default compiler that MathWorks supplies
with MATLAB for Windows 64-bit platforms is not a good compiler for
performance.

• Consider disabling run-time checks.

By default, for safety, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks result in more
generated code and slower simulation. Disabling run-time checks usually results
in streamlined generated code and faster simulation. Disable these checks only if
you have verified that array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”
• “Code Generation for Variable-Size Arrays”
• “Control Run-Time Checks”

Tutorial Steps
• “Copying Files Locally” on page 2-39
• “Running the Original MATLAB Code” on page 2-40

2 Tutorials

2-38

• “Setting Up Your C Compiler” on page 2-41
• “Considerations for Making Your Code Suitable for Code Generation” on page 2-42
• “Making the MATLAB Code Suitable for Code Generation” on page 2-43
• “Generating a MEX Function Using codegen” on page 2-45
• “Verifying the MEX Function” on page 2-46
• “Generating C Code Using codegen” on page 2-47
• “Comparing the Generated C Code to Original MATLAB Code” on page 2-49
• “Modifying the Filter to Accept a Fixed-Size Input” on page 2-49
• “Modifying the Filter to Accept a Variable-Size Input” on page 2-54
• “Testing the Algorithm with Variable-Size Inputs” on page 2-54
• “Generating C Code for a Variable-Size Input” on page 2-55

Copying Files Locally

Copy the tutorial files to a local working folder:

1 Create a local solutions folder, for example, c:\coder\kalman\solutions.
2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB

command prompt, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))
3 Copy the contents of the kalman subfolder to your local solutions folder, specifying

the full path name of the solutions folder:

copyfile('kalman', 'solutions')

Your solutions folder now contains a complete set of solutions for the tutorial. If
you do not want to perform the steps for each task in the tutorial, you can view the
solutions to see how the code should look.

4 Create a local work folder, for example, c:\coder\kalman\work.
5 Copy the following files from your solutions folder to your work folder.

• kalman01.m
• position.mat
• Build files build01.m through build04.m

 C Code Generation at the Command Line

2-39

• Test scripts test01.m through test04.m
• plot_trajectory.m

Your work folder now contains the files that you need to get started with the
tutorial.

Running the Original MATLAB Code

In this tutorial, you work with a MATLAB function that implements a Kalman filter
algorithm, which predicts the position of a moving object based on its past positions.
Before generating C code for this algorithm, you make the MATLAB version suitable for
code generation and generate a MEX function. Then you test the resulting MEX function
to validate the functionality of the modified code. As you work through the tutorial, you
refine the design of the algorithm to accept variable-size inputs.

First, use the script test01.m to run the original MATLAB function to see how the
Kalman filter algorithm works. This script loads the input data and calls the Kalman
filter algorithm to estimate the location. It then calls a plot function, plot_trajectory,
which plots the trajectory of the object and the Kalman filter estimated position.

1 Set your MATLAB current folder to the work folder that contains your files for this
tutorial. At the MATLAB command prompt, enter:

cd work

where work is the full path name of the work folder containing your files. For more
information, see “Files and Folders that MATLAB Accesses” (MATLAB).

2 At the MATLAB command prompt, enter:

test01

The test script runs and plots the trajectory of the object in blue and the Kalman
filter estimated position in green. Initially, you see that it takes a short time for the
estimated position to converge with the actual position of the object. Then three
sudden shifts in position occur—each time the Kalman filter readjusts and tracks
the object after a few iterations.

2 Tutorials

2-40

Setting Up Your C Compiler

MATLAB Coder automatically locates and uses a supported installed compiler. For the
current list of supported compilers, see Supported and Compatible Compilers on the
MathWorks website.

 C Code Generation at the Command Line

2-41

http://www.mathworks.com/support/compilers/current_release/

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Considerations for Making Your Code Suitable for Code Generation
Designing for Code Generation

Before generating code, you must prepare your MATLAB code for code generation. The
first step is to eliminate unsupported constructs.
Checking for Issues at Design Time

There are two tools that help you detect code generation issues at design time: the code
analyzer and the code generation readiness tool.

You use the code analyzer in the MATLAB Editor to check for coding issues at design
time, minimizing compilation errors. The code analyzer continuously checks your code as
you enter it. It reports issues and recommends modifications to maximize performance
and maintainability.

To use the code analyzer to identify warnings and errors specific to MATLAB for code
generation, you must add the %#codegen directive (or pragma) to your MATLAB file. A
complete list of MATLAB for Code Generation code analyzer messages is available in the
MATLAB Code Analyzer preferences. See “Running the Code Analyzer Report”
(MATLAB).

Note The code analyzer might not detect all MATLAB for code generation issues. After
eliminating errors or warnings that the code analyzer detects, compile your code with
MATLAB Coder to determine if the code has other compliance issues.

The code generation readiness tool screens MATLAB code for features and functions that
are not supported for code generation. The tool provides a report that lists the source
files that contain unsupported features and functions and an indication of how much
work is required to make the MATLAB code suitable for code generation.

You can access the code generation readiness tool in the following ways:

• In the current folder browser — by right-clicking a MATLAB file
• At the command line — by using the coder.screener function.
• Using the MATLAB Coder app — after you specify your entry-point files, the app runs

the Code Analyzer and code generation readiness tool.

2 Tutorials

2-42

Checking Issues at Code Generation Time

You can use codegen to check for issues at code generation time. codegen checks that
your MATLAB code is suitable for code generation.

When codegen detects errors or warnings, it automatically generates an error report
that describes the issues and provides links to the offending MATLAB code. For more
information, see “Code Generation Reports”.

After code generation, codegen generates a MEX function that you can use to test your
implementation in MATLAB.

Checking for Issues at Run Time

You can use codegen to generate a MEX function and check for issues at run time. In
simulation, the code generated for your MATLAB functions includes the run-time checks.
Disabling run-time checks and extrinsic calls usually results in streamlined generated
code and faster simulation. You control run-time checks using the MEX configuration
object, coder.MexCodeConfig. For more information, see “Control Run-Time Checks”.

If you encounter run-time errors in your MATLAB functions, a run-time stack appears
automatically in the MATLAB Command Window. See “Debug Run-Time Errors”.

Making the MATLAB Code Suitable for Code Generation

Making Your Code Suitable for Code Generation

To modify the code yourself, work through the exercises in this section. Otherwise, open
the supplied file kalman02.m in your solutions subfolder to see the modified
algorithm.

To begin the process of making your MATLAB code suitable for code generation, you
work with the file kalman01.m. This code is a MATLAB version of a scalar Kalman filter
that estimates the state of a dynamic system from a series of noisy measurements.

1 Set your MATLAB current folder to the work folder that contains your files for this
tutorial. At the MATLAB command prompt, enter:

cd work

where work is the full path name of the work folder containing your files. See “Files
and Folders that MATLAB Accesses” (MATLAB).

 C Code Generation at the Command Line

2-43

2 Open kalman01.m in the MATLAB Editor. At the MATLAB command prompt,
enter:
edit kalman01.m

The file opens in the MATLAB Editor. The code analyzer message indicator in the
top right corner of the MATLAB Editor is green, which indicates that it has not
detected errors, warnings, or opportunities for improvement in the code.

3 Turn on MATLAB for code generation error checking by adding the %#codegen
directive after the function declaration.
function y = kalman01(z) %#codegen

The code analyzer message indicator remains green, indicating that it has not
detected code generation related issues.

For more information on using the code analyzer, see “Running the Code Analyzer
Report” (MATLAB).

4 Save the file in the current folder as kalman02.m:

a To match the function name to the file name, change the function name to
kalman02.

function y = kalman02(z)
b In the MATLAB Editor, select Save As from the File menu.
c Enter kalman02.m as the new file name.

Note If you do not match the file name to the function name, the code analyzer
warns you that these names are not the same and highlights the function name

2 Tutorials

2-44

in orange to indicate that it can provide an automatic correction. For more
information, see “Changing Code Based on Code Analyzer Messages”
(MATLAB).

d Click Save.

You are now ready to compile your code using codegen. By default, codegen checks
that your MATLAB code is suitable for code generation. Then, after compilation,
codegen generates a MEX function that you can test in MATLAB.

Generating a MEX Function Using codegen

Because C uses static typing, codegen must determine the properties of all variables in
the MATLAB files at compile time. Therefore, you must specify the properties of all
function inputs at the same time as you compile the file with codegen.

To compile kalman02.m, you must specify the size of the input vector y.

1 Load the position.mat file into your MATLAB workspace.

load position.mat

This command loads a matrix position containing the x and y coordinates of 310
points in Cartesian space.

2 Get the first vector in the position matrix.

z = position(1:2,1);
3 Compile the file kalman02.m using codegen.

codegen -report kalman02.m -args {z}

codegen reports that the code generation is complete. By default, it generates a
MEX function, kalman02_mex, in the current folder and provides a link to the code
generation report.

Note that:

• The -report option instructs codegen to generate a code generation report,
which you can use to debug your MATLAB code and verify that it is suitable for
code generation.

• The -args option instructs codegen to compile the file kalman02.m using the
class, size, and complexity of the sample input parameter z.

 C Code Generation at the Command Line

2-45

You have proved that the Kalman filter example code is suitable for code generation
using codegen. You are ready to begin the next task in this tutorial, “Verifying the MEX
Function” on page 2-46.

Verifying the MEX Function

In this part of the tutorial, you test the MEX function to verify that it provides the same
functionality as the original MATLAB code.

In addition, simulating your algorithm in MATLAB before generating C code enables you
to detect and fix run-time errors that would be much harder to diagnose in the generated
C code. By default, the MEX function includes memory integrity checks. These checks
perform array bounds and dimension checking and detect violations of memory integrity
in code generated for MATLAB functions. If a violation is detected, MATLAB stops
execution with a diagnostic message. For more information, see “Control Run-Time
Checks”.
Running the Generated MEX Function

You run the MEX function, kalman02_mex, using coder.runTest to call the test file,
test02. This test file is the same as test01 that you used in “Running the Original
MATLAB Code” on page 2-40 except that it calls kalman02 instead of kalman01.

Contents of test02.m

% Figure setup
clear all;
load position.mat
numPts = 300;
figure;hold;grid;

% Kalman filter loop
for idx = 1: numPts
 % Generate the location data
 z = position(:,idx);

 % Use Kalman filter to estimate the location
 y = kalman02(z);

 % Plot the results
 plot_trajectory(z,y);
end
hold;

2 Tutorials

2-46

coder.runTest runs the test file and replaces calls to the MATLAB algorithm with
calls to the MEX function.

coder.runTest('test02','kalman02')

coder.runTest runs the MEX function, kalman02_mex, using the same inputs you
used in “Running the Original MATLAB Code” on page 2-40.

The test script runs and plots the trajectory of the object and the Kalman filter estimated
position as before.

You have generated a MEX function for your MATLAB code, verified that it is
functionally equivalent to your original MATLAB code, and checked for run-time errors.
Now you are ready to begin the next task in this tutorial, “Generating C Code Using
codegen” on page 2-47.

To verify that the MEX function is functionally equivalent to your original MATLAB
code, instead of using coder.runTest, you can use the codegen -test option. For
example:

codegen kalman02 -args {z} -test test02 -report

Using codegen with the -test option combines MEX generation and testing in one step.

Generating C Code Using codegen

In this task, you use codegen to generate C code for your MATLAB filter algorithm. You
then view the generated C code using the MATLAB Coder code generation report and
compare the generated C code with the original MATLAB code. You use the supplied
build script build02.m to generate code.

About the Build Script

A build script automates a series of MATLAB commands that you want to perform
repeatedly from the command line, saving you time and eliminating input errors.

The build script build02.m contains:

% Load the position vector
load position.mat
% Get the first vector in the position matrix
% to use as an example input
z = position(1:2,1);

 C Code Generation at the Command Line

2-47

% Generate C code only, create a code generation report
codegen -c -d build02 -config coder.config('lib')
 -report kalman02.m -args {z}

Note that:

• codegen opens the file kalman02.m and automatically translates the MATLAB code
into C source code.

• The -c option instructs codegen to generate code only, without compiling the code to
an object file. This option enables you to iterate rapidly between modifying MATLAB
code and generating C code.

• The -config coder.config('lib') option instructs codegen to generate
embeddable C code suitable for targeting a static library instead of generating the
default MEX function. For more information, see coder.config.

• The -d option instructs codegen to generate code in the output folder build02.
• The -report option instructs codegen to generate a code generation report that you

can use to debug your MATLAB code and verify that it is suitable for code generation.
• The -args option instructs codegen to compile the file kalman01.m using the class,

size, and complexity of the sample input parameter z.

How to Generate C Code

1 Run the build script.

build02

MATLAB processes the build file and outputs the message:

Code generation successful: View report.

codegen generates files in the folder, build02.
2 To view the code generation report, click View report.

The MATLAB Coder Code Generation Report opens and displays the generated code,
kalman02.c.

The file appears in the right pane. The code generation report provides a hyperlink
to open the C code in the MATLAB Editor.

To learn more about the report, see “Code Generation Reports”.

2 Tutorials

2-48

Comparing the Generated C Code to Original MATLAB Code

To compare your generated C code to the original MATLAB code, open the C file,
kalman02.c, and the kalman02.m file in the MATLAB Editor.

Here are some important points about the generated C code:

• The function signature is:

void kalman02(const double z[2], double y[2])

z corresponds to the input z in your MATLAB code. The size of z is 2, which
corresponds to the total size (2 x 1) of the example input you used when you compiled
your MATLAB code.

• You can easily compare the generated C code to your original MATLAB code. In the
generated C code:

• Your function name is unchanged.
• Your comments are preserved in the same position.
• Your variable names are the same as in the original MATLAB code.

Note If a variable in your MATLAB code is set to a constant value, it does not
appear as a variable in the generated C code. Instead, the generated C code
contains the actual value of the variable.

Modifying the Filter to Accept a Fixed-Size Input

The filter you have worked on so far in this tutorial uses a simple batch process that
accepts one input at a time, so you must call the function repeatedly for each input. In
this part of the tutorial, you learn how to modify the algorithm to accept a fixed-sized
input, which makes the algorithm suitable for frame-based processing.
Modifying Your MATLAB Code

To modify the code yourself, work through the exercises in this section. Otherwise, open
the supplied file kalman03.m in your solutions subfolder to see the modified algorithm.

The filter algorithm you have used so far in this tutorial accepts only one input. You can
now modify the algorithm to process a vector containing more than one input. You need
to find the length of the vector and call the filter code for each element in the vector in
turn. You do this by calling the filter algorithm in a for-loop.

 C Code Generation at the Command Line

2-49

1 Open kalman02.m in the MATLAB Editor.

edit kalman02.m
2 Add a for-loop around the filter code.

a Before the comment

% Predicted state and covariance

insert:

for i=1:size(z,2)
b After

% Compute the estimated measurements
y = H * x_est;

insert:

end

Your filter code should now look like this:

for i=1:size(z,2)
 % Predicted state and covariance
 x_prd = A * x_est;
 p_prd = A * p_est * A' + Q;

 % Estimation
 S = H * p_prd' * H' + R;
 B = H * p_prd';
 klm_gain = (S \ B)';

 % Estimated state and covariance
 x_est = x_prd + klm_gain * (z - H * x_prd);
 p_est = p_prd - klm_gain * H * p_prd;

 % Compute the estimated measurements
 y = H * x_est;
end

3 Modify the line that calculates the estimated state and covariance to use the ith
element of input z.

Change

2 Tutorials

2-50

x_est = x_prd + klm_gain * (z - H * x_prd);

to

x_est = x_prd + klm_gain * (z(:,i) - H * x_prd);
4 Modify the line that computes the estimated measurements to append the result to

the ith element of the output y.

Change

y = H * x_est;

to

y(:,i) = H * x_est;

The code analyzer message indicator in the top right turns red to indicate that the
code analyzer has detected an error. The code analyzer underlines the offending code
in red and places a red marker to the right.

5 Move your pointer over the red marker to view the error.

The code analyzer reports that code generation requires variable y to be fully defined
before subscripting it.

Why Preallocate the Outputs?

You must preallocate outputs here because the MATLAB for code generation does
not support increasing the size of an array over time. Repeatedly expanding the size
of an array over time can adversely affect the performance of your program. See
“Preallocating Memory” (MATLAB).

 C Code Generation at the Command Line

2-51

6 To address the error, preallocate memory for the output y, which is the same size as
the input z. Add this code before the for-loop.

 % Pre-allocate output signal:
 y=zeros(size(z));

The red error marker disappears and the code analyzer message indicator in the top
right edge of the code turns green, which indicates that you have fixed the errors and
warnings detected by the code analyzer.

For more information on using the code analyzer, see “Running the Code Analyzer
Report” (MATLAB).

7 Change the function name to kalman03 and save the file as kalman03.m in the
current folder.

You are ready to begin the next task in the tutorial, “Testing Your Modified Algorithm”
on page 2-52.
Testing Your Modified Algorithm

Use the test script test03.m to test kalman03.m. This script sets the frame size to 10
and calculates the number of frames in the example input. It then calls the Kalman filter
and plots the results for each frame in turn.

2 Tutorials

2-52

At the MATLAB command prompt, enter:

test03

The test script runs and plots the trajectory of the object and the Kalman filter estimated
position as before.

You are ready to begin the next task in the tutorial, “Generating C Code for Your
Modified Algorithm” on page 2-53.

Note Before generating C code, it is best practice to generate a MEX function that you
can execute within the MATLAB environment to test your algorithm and check for run-
time errors.

Generating C Code for Your Modified Algorithm

You use the supplied build script build03.m to generate code. The only difference
between this build script and the script for the initial version of the filter is the example
input used when compiling the file. build03.m specifies that the input to the function is
a matrix containing five 2x1 position vectors, which corresponds to a frame size of 10.

Contents of build03.m

% Load the position vector
load position.mat
% Get the first 5 positions in the position matrix to use
% as an example input
z = position(1:2,1:5);
% Generate C code only, create a code generation report
codegen -c -config coder.config('lib') -report kalman03.m -args {z}

To generate C code for kalman03:

1 At the MATLAB command prompt, enter:

build03

MATLAB processes the build file and outputs the message:

Code generation successful: View report.

 C Code Generation at the Command Line

2-53

The generated C code is in work\codegen\lib\kalman03, where work is the folder
that contains your tutorial files.

2 To view the generated C code:

a Click View report.

The MATLAB Coder Code Generation Report opens and displays the generated
coder, kalman03.c.

3 Compare the generated C code with the C code for the scalar Kalman filter. You see
that the code is almost identical except that there is a now a for-loop for the frame
processing.

Here are some important points about the generated C code:

• The function signature is now:

void kalman03(const double z[10], double y[10])

The size of z and y is now 10, which corresponds to the size of the example input
z (2x5) used to compile your MATLAB code.

• The filtering now takes place in a for-loop. The for-loop iterates over all 5
inputs.

for(i = 0; i < 5; i++)
{
 /* Predicted state and covariance */ ...

Modifying the Filter to Accept a Variable-Size Input

The algorithm you have used so far in this tutorial is suitable for processing input data
that consists of fixed-size frames. In this part of the tutorial, you test your algorithm
with variable-size inputs and see that the algorithm is suitable for processing packets of
data of varying size. You then learn how to generate code for a variable-size input.

Testing the Algorithm with Variable-Size Inputs

Use the test script test04.m to test kalman03.m with variable-size inputs.

The test script calls the filter algorithm in a loop, passing a different size input to the
filter each time. Each time through the loop, the test script calls the plot_trajectory
function for every position in the input.

2 Tutorials

2-54

To run the test script, at the MATLAB command prompt, enter:
test04

The test script runs and plots the trajectory of the object and the Kalman filter estimated
position as before.

You have created an algorithm that accepts variable-size inputs. You are ready to begin
the next task in the tutorial, “Generating C Code for a Variable-Size Input” on page 2-
55.

Note Before generating C code, it is best practice to generate a MEX function that you
can execute within the MATLAB environment to test your algorithm and check for run-
time errors.

Generating C Code for a Variable-Size Input

You use the supplied build script build04.m to generate code.
About the Build Script

Contents of build04.m

% Load the position vector
load position.mat
N=100;
% Get the first N vectors in the position matrix to
% use as an example input
z = position(1:2,1:N);
% Specify the upper bounds of the variable-size input z
% using the coder.typeof declaration - the upper bound
% for the first dimension is 2; the upper bound for
% the second dimension is N. The first dimension is fixed,
% the second is variable.
eg_z = coder.typeof(z, [2 N], [0 1]);
% Generate C code only
% specify upper bounds for variable-size input z
codegen -c -config coder.config('lib') -report kalman03.m -args {eg_z}

This build file:

• Specifies the upper bounds explicitly for the variable-size input using the declaration
coder.typeof(z, [2 N], [0 1]) with the -args option on the codegen

 C Code Generation at the Command Line

2-55

command line. The second input, [2 N], specifies the size and upper bounds of the
variable size input z. Because N=100, coder.typeof specifies that the input to the
function is a matrix with two dimensions, the upper bound for the first dimension is
2; the upper bound for the second dimension is 100. The third input specifies which
dimensions are variable. A value of true or one means that the corresponding
dimension is variable; a value of false or zero means that the corresponding
dimension is fixed. The value [0 1] specifies that the first dimension is fixed, the
second dimension is variable. For more information, see “Generating Code for
MATLAB Functions with Variable-Size Data”.

• Creates a code configuration object cfg and uses it with the -config option to
specify code generation parameters. For more information, see coder.config.

How to Generate C Code for a Variable-Size Input

1 Use the build script build04 to generate C code.

build04
2 View the generated C code as before.

Here are some important points about the generated C code:

• The generated C code can process inputs from 2 x 1 to 2 x 100. The function
signature is now:
void kalman01(const double z_data[], const int z_size[2], double y_data[], int y_size[2])

Because y and z are variable size, the generated code contains two pieces of
information about each of them: the data and the actual size of the sample. For
example, for variable z, the generated code contains:

• The data z_data[].
• z_size[2], which contains the actual size of the input data. This information

varies each time the filter is called.
• To maximize efficiency, the actual size of the input data z_size is used when

calculating the estimated position. The filter processes only the number of
samples available in the input.

 for(i = 0; i+1 <= z_size[1]; i++) {
 /* Predicted state and covariance */
 for(k = 0; k < 6; k++) {
 ...

2 Tutorials

2-56

Key Points to Remember
• Back up your MATLAB code before you modify it.
• Decide on a naming convention for your files and save interim versions frequently.

For example, this tutorial uses a two-digit suffix to differentiate the various versions
of the filter algorithm.

• Use build scripts to build your files.
• Use test scripts to separate the pre- and post-processing from the core algorithm.
• Generate a MEX function before generating C code. Use this MEX function to

simulate your algorithm in MATLAB to validate its operation and check for run-time
errors.

• Use the -args option to specify input parameters at the command line.
• Use the -report option to create a code generation report.
• Use coder.typeof to specify variable-size inputs.
• Use the code generation configuration object (coder.config) to specify parameters

for standalone C code generation.

Best Practices Used in This Tutorial

Best Practice — Preserving Your Code

Preserve your code before making further modifications. This practice provides a fallback
in case of error and a baseline for testing and validation. Use a consistent file naming
convention. For example, add a two-digit suffix to the file name for each file in a
sequence.

Best Practice — Comparing Files

Use the MATLAB Compare Against option to compare two MATLAB files to examine
differences between files.

Best Practice — Generating a Code Generation Report

Use the -report option to generate an HTML report with links to your MATLAB code
files and compile-time type information for the variables and expressions in your code.
This information simplifies finding sources of error messages and aids understanding of
type propagation rules. If you do not specify this option, codegen generates a report only

 C Code Generation at the Command Line

2-57

if errors or warnings occur. See “-report Generate Code Generation Report” on page 3-
2.

Best Practice — Using Build Scripts

A build script automates a series of MATLAB commands that you want to perform
repeatedly from the command line, saving you time and eliminating input errors. See
“Using Build Scripts” on page 3-5.

Best Practice — Separating Your Test Bench from Your Function Code

Separate your core algorithm from your test bench. Create a separate test script to do the
pre- and post-processing such as loading inputs, setting up input values, calling the
function under test, and outputting test results.

Learn More

• “Next Steps” on page 2-58
• “MathWorks Online” on page 2-59

Next Steps

To... See...
See the compilation options for codegen codegen
Learn how to integrate your MATLAB code with
Simulink models

“Track Object Using MATLAB Code” (Simulink)

Learn more about using MATLAB for code
generation

“MATLAB Programming for Code Generation”

Use variable-size data “Code Generation for Variable-Size Arrays”
Speed up fixed-point MATLAB code fiaccel
Integrate custom C code into MATLAB code and
generate standalone code

“Specify External File Locations”

Integrate custom C code into a MATLAB
function for code generation

coder.ceval

Generate HDL from MATLAB code www.mathworks.com/products/slhdlcoder

2 Tutorials

2-58

https://www.mathworks.com/products/slhdlcoder/

MathWorks Online

For additional information and support, visit the MATLAB Coder page on the
MathWorks website at:

www.mathworks.com/products/matlab-coder

 C Code Generation at the Command Line

2-59

https://www.mathworks.com/products/matlab-coder/

MEX Function Generation at the Command Line
In this section...
“Learning Objectives” on page 2-60
“Tutorial Prerequisites” on page 2-60
“Example: Euclidean Minimum Distance” on page 2-61
“Files for the Tutorial” on page 2-63
“Tutorial Steps” on page 2-64
“Key Points to Remember” on page 2-80
“Best Practices Used in This Tutorial” on page 2-81
“Where to Learn More” on page 2-81

Learning Objectives

In this tutorial, you will learn how to:

• Automatically generate a MEX function from your MATLAB code.
• Define function input properties at the command line.
• Specify the upper bounds of variable-size data.
• Specify variable-size inputs.
• Generate a code generation report that you can use to debug your MATLAB code and

verify that it is suitable for code generation.

Tutorial Prerequisites
• “What You Need to Know” on page 2-60
• “Required Products” on page 2-60

What You Need to Know

To complete this tutorial, you should have basic familiarity with MATLAB software.

Required Products

To complete this tutorial, you must install the following products:

2 Tutorials

2-60

• MATLAB
• MATLAB Coder
• C compiler

For most platforms, a default compiler is supplied with MATLAB.

MATLAB Coder automatically locates and uses a supported installed compiler. For
the current list of supported compilers, see Supported and Compatible Compilers on
the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

For instructions on installing MathWorks products, refer to the installation
documentation. If you have installed MATLAB and want to check which other
MathWorks products are installed, enter ver in the MATLAB Command Window.

Example: Euclidean Minimum Distance
• “Description” on page 2-61
• “Algorithm” on page 2-62

Description

The Euclidean distance between points p and q is the length of the line segment pq . In

Cartesian coordinates, if p p p pn= (, ,...,)1 2 and q q q qn= (, ,...,)1 2 are two points in
Euclidean n-space, then the distance from p to q is given by:
d p q p q

p q p q p q

p q

n n

i i
i

n

(,)

() () ... ()

()

= -

= - + - + + -

= -

=

Â

1 1
2

2 2
2 2

2

1

In one dimension, the distance between two points, x1 and x2, on a line is simply the
absolute value of the difference between the two points:

()x x x x2 1
2

2 1- = -

 MEX Function Generation at the Command Line

2-61

http://www.mathworks.com/support/compilers/current_release/

In two dimensions, the distance between p p p= (,)1 2 and q q q= (,)1 2 is:

() ()p q p q1 1
2

2 2
2

- + -

The example for this tutorial computes the minimum Euclidean distance between a
column vector x and a collection of column vectors in the codebook matrix cb. The
function has three output variables:

• y, the vector in cb with the minimum distance to x
• idx, the index of the column vector in cb corresponding to the closest vector
• distance, the distance between x and y

Algorithm

This algorithm computes the minimum Euclidean distance between a column vector x
and a collection of column vectors in the codebook matrix cb. The algorithm computes the
minimum distance to x and finds the column vector in cb that is closest to x. It outputs
this column vector, y, its index, idx, in cb, and distance, the distance between x and y.

The function signature for the algorithm is:

function [y,idx,distance] = euclidean(x,cb)

The minimum distance is initially set to the first element of cb.

idx=1;
distance=norm(x-cb(:,1));

The minimum distance calculation is performed in the for-loop.

for index=2:size(cb,2)
 d=norm(x-cb(:,index));
 if d < distance
 distance=d;
 idx=index;
 end
end

The output y is set to the minimum distance vector.

y=cb(:,idx);

2 Tutorials

2-62

Files for the Tutorial
• “About the Tutorial Files” on page 2-63
• “Location of Files” on page 2-63
• “Names and Descriptions of Files” on page 2-63

About the Tutorial Files

The tutorial uses the following files:

• Example MATLAB code files for each step of the tutorial.

Throughout this tutorial, you work with MATLAB files that contain a simple
Euclidean distance algorithm.

• Build scripts that you use to compile your function code.
• Test files that:

• Perform the preprocessing functions, for example, setting up input data.
• Call the specified Euclidean function.
• Perform the post-processing functions, for example, plotting the distances.

• A MAT-file that contains example input data.

Location of Files

The tutorial files are available in the following folder: docroot\toolbox\coder
\examples\euclidean. To run the tutorial, you must copy these files to a local folder.
For instructions, see “Copying Files Locally” on page 2-65.

Names and Descriptions of Files
Type Name Description
Function
code

euclidean01.m Baseline MATLAB implementation of
Euclidean minimum distance algorithm
including plot functions.

euclidean02.m Version of the original algorithm with the
%#codegen directive.

euclidean03.m Version of the original algorithm without
plotting functions.

 MEX Function Generation at the Command Line

2-63

Type Name Description
euclidean04.m Modified algorithm that uses assert to

specify the upper bounds of variable N.
Build script build01.m Build script for euclidean03.m.

build02.m Build script for euclidean03.m specifying
two-dimensional inputs.

build03.m Build script for euclidean03.m specifying
variable-size inputs.

build04.m Build script for euclidean04.m.
Test script test01.m Initial version of test script, includes plot

functions. Tests euclidean03 MEX function.
test02.m Tests the three-dimensional euclidean03

MEX function with two-dimensional inputs.
test03.m Tests the two-dimensional euclidean04 MEX

function with two-dimensional inputs.
test04.m Tests euclidean03_varsize MEX function

with two-dimensional and three-dimensional
inputs.

test05.m Tests euclidean04 MEX function specifying
how many elements of each input to process.

MAT-file euclidean.mat Contains the input data used by the
algorithm.

Tutorial Steps

• “Copying Files Locally” on page 2-65
• “Running the Original MATLAB Code” on page 2-65
• “Setting Up Your C Compiler” on page 2-68
• “Considerations for Making Your Code Compliant” on page 2-68
• “Making the MATLAB Code Suitable for Code Generation” on page 2-70
• “Generating a MEX Function Using codegen” on page 2-70
• “Validating the MEX Function” on page 2-72

2 Tutorials

2-64

• “Using Build and Test Scripts” on page 2-73
• “Modifying the Algorithm to Accept Variable-Size Inputs” on page 2-75
• “Specifying Upper Bounds for Local Variables” on page 2-79

Copying Files Locally

Copy the tutorial files to a local solutions folder and create a local working folder:

1 Create a local solutions folder, for example, c:\coder\euclidean\solutions.
2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB

command prompt, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))
3 Copy the contents of the euclidean subfolder to your local solutions folder,

specifying the full pathname of the solutions folder:

copyfile('euclidean', 'solutions')

Your solutions folder now contains a complete set of solutions for the tutorial. If
you do not want to perform the steps for each task in the tutorial, you can view the
solutions to see how the code should look.

4 Create a local work folder, for example, c:\coder\euclidean\work.
5 Copy the following files from your solutions folder to your work folder.

• euclidean01.m
• euclidean.mat
• Build files build01.m through build04.m
• Test scripts test01.m through test05.m

Your work folder now contains the files that you need to get started with the
tutorial.

Running the Original MATLAB Code

In this tutorial, you work with a MATLAB function that implements the Euclidean
distance minimizing algorithm. You make the MATLAB version of this algorithm
suitable for code generation and test the resulting MEX function to validate the
functionality of the modified code. As you work through the tutorial, you refine the
design of the algorithm to accept variable-size inputs.

 MEX Function Generation at the Command Line

2-65

Before generating a MEX function, run the original MATLAB function to see how the
Euclidean distance minimizing algorithm works.

1 Set your MATLAB current folder to the work folder that contains your files for this
tutorial.

cd work

work is the full path name of the work folder containing your files. For more
information, see “Files and Folders that MATLAB Accesses” (MATLAB).

2 Load the euclidean.mat file into your MATLAB workspace.

load euclidean.mat

Your MATLAB workspace now contains:

• A matrix x containing 40000 three-dimensional vectors.
• A matrix cb containing 216 three-dimensional vectors.

The Euclidean algorithm minimizes the distance between a column vector, x1, taken
from matrix x, and the column vectors in the codebook matrix cb. It outputs the
column vector in cb that is closest to x1.

3 Create a single input vector x1 from the matrix x.

x1=x(:,1)

The result is the first vector from x:

x1 =

 0.8568
 0.7455
 0.3835

4 Use the Euclidean algorithm to find the vector in codebook matrix cb that is closest
to x1. At the MATLAB command prompt, enter:

[y, idx, distance]=euclidean01(x1,cb)

The Euclidean algorithm runs and plots the lines from x1 to each vector in cb.

2 Tutorials

2-66

After completing the algorithm, it outputs the coordinates of the point y, which is the
vector in cb closest to x1, together with the index idx of x1 in cb, and the distance,
distance, between y and x1.

y =
 0.8000
 0.8000
 0.4000

idx =
 171

distance =
 0.0804

The algorithm computes that the point y=0.8000, 0.8000, 0.4000, the 171st

vector in cb, is closest to point x1. The distance between y and x1 is 0.0804.

 MEX Function Generation at the Command Line

2-67

Where to Go Next

Before continuing with the tutorial, you must set up your C compiler as detailed in
“Setting Up Your C Compiler” on page 2-68.

Setting Up Your C Compiler

MATLAB Coder automatically locates and uses a supported installed compiler. For the
current list of supported compilers, see Supported and Compatible Compilers on the
MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default Compiler”
(MATLAB).

Considerations for Making Your Code Compliant
Designing for Code Generation

Before generating code, you must prepare your MATLAB code for code generation. The
first step is to eliminate unsupported constructs.
Checking for Issues at Design Time

There are two tools that help you detect code generation issues at design time: the code
analyzer and the code generation readiness tool.

You use the code analyzer in the MATLAB Editor to check for code issues at design time,
minimizing compilation errors. The code analyzer continuously checks your code as you
enter it. It reports problems and recommends modifications to maximize performance
and maintainability.

To use the code analyzer to identify warnings and errors specific to MATLAB for code
generation, you must add the %#codegen directive (or pragma) to your MATLAB file. A
complete list of MATLAB for Code Generation code analyzer messages is available in the
MATLAB Code Analyzer preferences. See “Running the Code Analyzer Report”
(MATLAB) for more details.

Note The code analyzer might not detect all MATLAB for code generation issues. After
eliminating errors or warnings that the code analyzer detects, compile your code with
MATLAB Coder to determine if the code has other compliance issues.

The code generation readiness tool screens MATLAB code for features and functions that
are not supported for code generation. The tool provides a report that lists the source

2 Tutorials

2-68

http://www.mathworks.com/support/compilers/current_release/

files that contain unsupported features and functions and an indication of how much
work is required to make the MATLAB code suitable for code generation.

You can access the code generation readiness tool in the following ways:

• In the current folder browser — by right-clicking a MATLAB file
• At the command line — by using the coder.screener function.
• In a project — when you add a MATLAB file to a project, if MATLAB Coder detects

code generation issues, it provides a link to the code generation readiness report.

Checking for Issues at Code Generation Time

You can use codegen to check for issues at code generation time. codegen checks that
your MATLAB code is suitable for code generation.

When codegen detects errors or warnings, it automatically generates an error report
that describes the issues and provides links to the offending MATLAB code. For more
information, see “Code Generation Reports”.

After code generation, codegen generates a MEX function that you can use to test your
implementation in MATLAB.
Checking for Issues at Run Time

You can use codegen to generate a MEX function and check for issues at run time. In
simulation, the code generated for your MATLAB functions includes the run-time checks.
Disabling run-time checks and extrinsic calls usually results in streamlined generated
code and faster simulation. You control run-time checks using the MEX configuration
object, coder.MexCodeConfig. For more information, see “Control Run-Time Checks”.

If you encounter run-time errors in your MATLAB functions, a run-time stack appears
automatically in the MATLAB Command Window. See “Debug Run-Time Errors”.
Where to Go Next

The next section of the tutorial, “Making Your Code Suitable for Code Generation” on
page 2-70, shows you how to use the MATLAB code analyzer and codegen to make
your code suitable for code generation.

 MEX Function Generation at the Command Line

2-69

Making the MATLAB Code Suitable for Code Generation

Making Your Code Suitable for Code Generation

To begin the process of making your MATLAB code suitable for code generation, you
work with the euclidean01.m file. This file is a MATLAB version of a three-
dimensional Euclidean example that plots the distances between an input vector x and
each of the vectors in the codebook matrix cb. It determines which vector in cb is closest
to x, and outputs this vector, its position in cb, and the distance to y.

1 In your work folder, open euclidean01.m in the MATLAB Editor.

edit euclidean01.m

The file opens. The code analyzer message indicator in the top right corner of the
MATLAB Editor is green, which indicates that the code analyzer has not detected
errors, warnings, or opportunities for improvement in the code.

2 Turn on code generation error checking by adding the %#codegen compilation
directive after the function declaration.

function [y, idx, distance] = ...
 euclidean01(x, cb) %#codegen

The code analyzer message indicator remains green, indicating that it has not
detected code generation issues.

For more information on using the code analyzer, see “Running the Code Analyzer
Report” (MATLAB).

3 Change the function name to euclidean02 and save the file as euclidean02.m in
the current folder.

You are now ready to compile your code using codegen, which checks that your code
is suitable for code generation. After code generation, codegen generates a MEX
function that you can test in MATLAB.

Generating a MEX Function Using codegen

About codegen

You generate MEX functions using codegen, a function that compiles MATLAB code to a
MEX function. codegen also checks that your MATLAB code is suitable for code
generation.

2 Tutorials

2-70

Using codegen

Because C uses static typing, codegen must determine the properties of all variables in
the MATLAB files at compile time. Therefore, you must specify the properties of all
function inputs at the same time as you compile the file with codegen. To compile
euclidean02.m, you must specify the size of the input vector x and the codebook matrix
cb.

1 Compile the euclidean02.m file.

codegen -report euclidean02.m -args {x(:,1), cb}

• By default, codegen generates a MEX function named euclidean02_mex in the
current folder. You can compare the results of running the MEX function with the
results of running the original MATLAB code.

• The -args option instructs codegen to compile the file euclidean02.m by using
the sample input parameters x(:,1) and cb.

• The -report option instructs codegen to produce a code generation report.
2 At the MATLAB command prompt, click the link to the code generation report. View

the MATLAB code for the plot_distances function.

MATLAB Coder treats common MATLAB visualization functions as extrinsic. It does not
generate code for these functions. Instead, for a MEX function, it generates code to run
the function in MATLAB. These functions include line, grid, clf, axis, and pause.
The report highlights extrinsic functions. If a function is not supported for code
generation, and is not treated as extrinsic, you must explicitly declare that the function
is extrinsic by using coder.extrinsic. See “Extrinsic Functions”.

 MEX Function Generation at the Command Line

2-71

You are ready to begin the next task in this tutorial, “Validating the MEX Function” on
page 2-72.

Validating the MEX Function

Test the MEX function that you generated in “Generating a MEX Function Using
codegen” on page 2-70 to verify that it provides the same functionality as the original
MATLAB code. You run the MEX function with the same inputs that you used in
“Running the Original MATLAB Code” on page 2-65.

Running the Generated MEX Function

1 Create a single input vector x1 from the matrix x.

x1=x(:,1)

The result is the first vector in x:

x1 =
 0.8568
 0.7455
 0.3835

2 Use the MEX function euclidean02_mex to find the vector in codebook matrix cb
that is closest to x1.

[y, idx, distance] = euclidean02_mex(x1,cb)

The MEX function runs and plots the lines from x1 to each vector in cb. After
completing the algorithm, it outputs the coordinates of the point y, which is the
vector in cb closest to x1, together with the index idx of y in cb, and the distance,
distance, between y and x1.

y =
 0.8000
 0.8000
 0.4000

idx =
 171

distance =
 0.0804

2 Tutorials

2-72

The plots and outputs are identical to those generated with the original MATLAB
function. The MEX function euclidean02_mex is functionally equivalent to the
original MATLAB code in euclidean01.m.

Using Build and Test Scripts

In “Check for Run-Time Issues” on page 2-17, you generated a MEX function for your
MATLAB code by calling codegen from the MATLAB command line. In this part of the
tutorial, you use a build script to generate your MEX function and a test script to test it.
The first step is to modify the code in euclidean02.m to move the plotting function to a
separate test script.

Why Use Build Scripts?

A build script automates a series of MATLAB commands that you want to perform
repeatedly from the command line, saving you time and eliminating input errors.

Why Use Test Scripts?

The euclidean02.m file contains both the Euclidean minimum distance algorithm and
the plot function. It is good practice to separate your core algorithm from your test bench.
This practice allows you to reuse your algorithm easily. Create a separate test script to
do the pre- and post-processing such as loading inputs, setting up input values, calling
the function under test, and outputting test results.

Modifying the Code to Remove the Plot Function

In the file euclidean02.m:

1 Delete the call to plot_distances.
2 Delete the local function plot_distances.
3 Change the function name to euclidean03 and save the file as euclidean03.m in

the current folder.

Using the Build Script build01.m

Next you use the build script build01.m that compiles euclidean03.m using codegen.
Use the -report option, which instructs codegen to generate a code generation report
that you can use to debug your MATLAB code and verify that it is suitable for code
generation.

 MEX Function Generation at the Command Line

2-73

Contents of Build File build01.m

% Load the test data
load euclidean.mat
% Compile euclidean03.m with codegen
codegen -report euclidean03.m -args {x(:,1), cb}

At the MATLAB command prompt, enter:

build01

codegen runs and generates a MEX function euclidean03_mex in the current folder.

You are ready to test the MEX function euclidean03_mex.
Using the Test Script test01.m

You use the test script test01.m to test the MEX function euclidean03_mex.

The test script:

• Loads the test data from the file euclidean.mat.
• Runs the original MATLAB file euclidean03.m and plots the distances.
• Runs the MEX function euclidean03_mex and plots the distances.

Contents of Test Script test01.m

% Load test data
load euclidean.mat
% Take a single input vector from the matrix x
x1=x(:,1);
% Run the original MATLAB function
disp('Running MATLAB function euclidean03');
[y, idx, distance] = euclidean03(x1,cb);
disp(['y = ', num2str(y')]);
disp(['idx = ', num2str(idx)]);
disp(['distance = ', num2str(distance)]);
% Visualize the distance minimization
% plot_distances
clf;
for index=1:size(cb,2)
line([x(1,1) cb(1,index)], [x(2,1) cb(2,index)], ...
 [x(3,1) cb(3,index)]);
end

2 Tutorials

2-74

axis([0 1 0 1 0 1]);grid;
pause(.5);
% Run the MEX function euclidean03_mex
disp('Running MEX function euclidean03_mex');
[y, idx, distance] = euclidean03_mex(x1,cb);
disp(['y = ', num2str(y')]);
disp(['idx = ', num2str(idx)]);
disp(['distance = ', num2str(distance)]);
% Visualize the distance minimization
% plot_distances
clf;
for index=1:size(cb,2)
line([x(1,1) cb(1,index)], [x(2,1) cb(2,index)], ...
 [x(3,1) cb(3,index)]);
end
axis([0 1 0 1 0 1]);grid;
pause(.5);

Running the Test Script

At the MATLAB command prompt, enter:
test01

The test file runs, plots the lines from x1 to each vector in cb, and outputs:

Running MATLAB function euclidean03
y = 0.8 0.8 0.4
idx = 171
distance = 0.080374
Running MEX function euclidean03_mex
y = 0.8 0.8 0.4
idx = 171
distance = 0.080374

The outputs for the original MATLAB code and the MEX function are identical.

You are now ready to begin the next task in this tutorial, “Modifying the Algorithm to
Accept Variable-Size Inputs” on page 2-75.

Modifying the Algorithm to Accept Variable-Size Inputs
Why Modify the Algorithm?

The algorithm you have used so far in this tutorial is suitable only to process inputs
whose dimensions match the dimensions of the example inputs provided using the -args

 MEX Function Generation at the Command Line

2-75

option. In this part of the tutorial, you run euclidean03_mex to see that it does not
accept two-dimensional inputs. You then recompile your code using two-dimensional
example inputs and test the resulting MEX function with the two-dimensional inputs.

About the Build and Test Scripts

Contents of test02.m

This test script creates two-dimensional inputs x2 and cb2, then calls
euclidean03_mex using these input parameters. You run this test script to see that
your existing algorithm does not accept two-dimensional inputs.

% Load the test data
load euclidean.mat

% Create 2-D versions of x and cb
x2=x(1:2,:);
x2d=x2(:,47);
cb2d=cb(1:2,1:6:216);

% Run euclidean03_mex with these 2-D inputs
disp('Attempting to run euclidean03_mex with 2-D inputs');
[y, idx, distance] = euclidean03_mex(x2d,cb2d);

Contents of build02.m

This build file creates two-dimensional example inputs x2d and cb2d then uses these
inputs to compile euclidean03.m.

% Load the test data
load euclidean.mat
% Create 2-D versions of x and cb
x2=x(1:2,:);
x2d=x2(:,47);
cb2d=cb(1:2,1:6:216);
% Recompile euclidean03 with 2-D example inputs
% The -o option instructs codegen to name the MEX function euclidean03_2d
disp('Recompiling euclidean03.m with 2-D example inputs');
codegen -o euclidean03_2d -report euclidean03.m -args {x2d, cb2d};

Contents of test03.m

This test script runs the MEX function euclidean03_2d with two-dimensional inputs.

2 Tutorials

2-76

% Load input data
load euclidean.mat
% Create 2-D versions of x and cb
x2=x(1:2,:);
x2d=x2(:,47);
cb2d=cb(1:2,1:6:216);
% Run new 2-D version of euclidean03
disp('Running new 2-D version of MEX function');
[y, idx, distance] = euclidean03_2d(x2d, cb2d);
disp(['y = ', num2str(y')]);
disp(['idx = ', num2str(idx)]);
disp(['distance = ', num2str(distance)]);

Running the Build and Test Scripts

1 Run the test script test02.m to test euclidean03x with two-dimensional inputs.

test02

MATLAB reports an error indicating that the MEX function does not accept two-
dimensional variables for the input cb.

 MATLAB expression 'x' is not of the correct size:
expected [3x1] found [2x1].

Error in ==> euclidean03

To process two-dimensional inputs, you must recompile your code providing two-
dimensional example inputs.

2 Run the build file build02.m to recompile euclidean03.m with two-dimensional
inputs.

build02

codegen compiles the file and generates a MEX function euclidean03_2d in the
current folder.

3 Run the test file test03.m to run the resulting MEX function euclidean03_2d
with two-dimensional inputs.

At the MATLAB command prompt, enter:

test03

 MEX Function Generation at the Command Line

2-77

This time, the MEX function runs and outputs the vector y in matrix cb that is
closest to x2d in two dimensions.

Running new 2-D version of MEX function
y = 0 0.4
idx = 3
distance = 0.053094

This part of the tutorial demonstrates how to create MEX functions to handle inputs
with different dimensions. Using this approach, you would need a library of MEX
functions, each one suitable only for inputs with specified data types, dimensions, and
complexity. Alternatively, you can modify your code to accept variable-size inputs. To
learn how, see “Specifying Variable-Size Inputs” on page 2-78.
Specifying Variable-Size Inputs

The original MATLAB function is suitable for many different size inputs. To provide this
same flexibility in your generated C code, use coder.typeof with the codegen -args
command-line option.

coder.typeof(a,b,1) specifies a variable-size input with the same class and
complexity as a and same size and upper bounds as the size vector b. For more
information, see “Specify Variable-Size Inputs at the Command Line”.

1 Compile this code using the build file build03.m. This build file uses
coder.typeof to specify variable-size inputs to the euclidean03 function.

build03

codegen compiles the file without warnings or errors and generates a MEX function
euclidean03_varsizex in the current folder.

2 Run the resulting MEX function with two-dimensional and then three-dimensional
inputs using the test file test04.m.

At the MATLAB command prompt, enter:

test04

The test file runs and outputs:

Running euclidean03_varsizex with 2-D inputs
y = 0 0.4
idx = 3

2 Tutorials

2-78

distance = 0.053094
Running euclidean04_varsizex with 3-D inputs
y = 0.6 0.8 0.2
idx = 134
distance = 0.053631

You have created an algorithm that accepts variable-size inputs.

Specifying Upper Bounds for Local Variables

In this part of the tutorial, you modify the algorithm to compute only the distance
between the first N elements of a given vector x and the first N elements of every column
vector in the matrix cb.

To modify the Euclidean minimum distance algorithm, euclidean03.m, to accommodate
changes in dimensions over which to compute the distances:

1 Provide a new input parameter, N, to specify the number of elements to consider. The
new function signature is:

function [y,idx,distance] = euclidean03(x,cb,N)
2 Specify an upper bound for the variable N using assert. Add this line after the

function declaration.

assert(N<=3);

The value of the upper bound must correspond to the maximum number of
dimensions of matrix cb. If you do not specify an upper bound, an array bounds error
occurs if you run the MEX function with a value for N that exceeds the number of
dimensions of matrix cb. For more information, see “Specify Upper Bounds for
Variable-Size Arrays”.

3 Modify the line of code that calculates the initial distance to use N. Replace the line:

distance=norm(x-cb(:,1));

with:

distance=norm(x(1:N)-cb(1:N,1));
4 Modify the line of code that calculates each successive distance to use N. Replace the

line:

d=norm(x-cb(:,index));

 MEX Function Generation at the Command Line

2-79

with:

d=norm(x(1:N)-cb(1:N,index));
5 Change the function name to euclidean04 and save the file as euclidean04.m in

the current folder.
6 Compile this code using the build file build04.m.

At the MATLAB command prompt, enter:

build04

codegen compiles the file without warnings or errors and generates a MEX function
euclidean04x in the current folder.

7 Run the resulting MEX function to process the first two elements of the inputs x and
cb , then to process all three elements of these inputs. Use the test file test05.m.

At the MATLAB command prompt, enter:

test05

The test file runs and outputs:

Running euclidean04_mex for first two elements of inputs x and cb
y = 0.8 0.8 0
idx = 169
distance = 0.078672
Running eucidean04_mex for three elements of inputs x and cb
y = 0.8 0.8 0.4
idx = 171
distance = 0.080374

Key Points to Remember

• Back up your MATLAB code before you modify it.
• Decide on a naming convention for your files and save interim versions frequently.

For example, this tutorial uses a two-digit suffix to differentiate the various versions
of the filter algorithm.

• Use build scripts to build your files.
• Use test scripts to separate the pre- and post-processing from the core algorithm.

2 Tutorials

2-80

• Use the -args option to specify input parameters at the command line.
• Use the MATLAB assert function to specify the upper bounds of variable-size data.
• Use the -report option to create a code generation report.
• Use coder.typeof(a,b,1) to specify variable-size inputs.

Best Practices Used in This Tutorial

Best Practice — Preserving Your Code

Preserve your code before making further modifications. This practice provides a fallback
in case of error and a baseline for testing and validation. Use a consistent file naming
convention. For example, add a 2-digit suffix to the file name for each file in a sequence.

Best Practice — Generating a Code Generation Report

Use the -report option to generate an HTML report with links to your MATLAB code
files and compile-time type information for the variables and expressions in your code.
This information simplifies finding sources of error messages and aids understanding of
type propagation rules. If you do not specify this option, codegen generates a report only
if errors or warnings occur. For more information, see “-report Generate Code Generation
Report” on page 3-2.

Where to Learn More

• “Next Steps” on page 2-81
• “Product Help” on page 2-82
• “MathWorks Online” on page 2-82

Next Steps

To... See...
Learn how to generate C code from your
MATLAB code

“C Code Generation at the Command Line” on
page 2-32

Learn how to integrate your MATLAB code with
Simulink models

“Track Object Using MATLAB Code” (Simulink)

 MEX Function Generation at the Command Line

2-81

To... See...
Learn more about using code generation from
MATLAB

“MATLAB Programming for Code Generation”

Use variable-size data “Code Generation for Variable-Size Arrays”
Speed up fixed-point MATLAB code fiaccel
Integrate custom C code into MATLAB code and
generate embeddable code

“External Code Integration”

Integrate custom C code into a MATLAB function coder.ceval
Generate HDL from MATLAB code www.mathworks.com/products/slhdlcoder

Product Help

MathWorks product documentation is available online from the Help menu on the
MATLAB desktop.

MathWorks Online

For additional information and support, visit the MATLAB Coder page on the
MathWorks website at:

www.mathworks.com/products/featured/matlab-coder

2 Tutorials

2-82

http://www.mathworks.com/products/slhdlcoder/
https://www.mathworks.com/products/matlab-coder/

Best Practices for Working with MATLAB
Coder

• “Recommended Compilation Options for codegen” on page 3-2
• “Testing MEX Functions in MATLAB” on page 3-3
• “Comparing C Code and MATLAB Code Using Tiling in the MATLAB Editor”

on page 3-4
• “Using Build Scripts” on page 3-5
• “Check Code Using the MATLAB Code Analyzer” on page 3-7
• “Separating Your Test Bench from Your Function Code” on page 3-8
• “Preserving Your Code” on page 3-9
• “File Naming Conventions” on page 3-10

3

Recommended Compilation Options for codegen
In this section...
“-c Generate Code Only” on page 3-2
“-report Generate Code Generation Report” on page 3-2

-c Generate Code Only

Use the -c option to generate code only without invoking the make command. If this
option is used, codegen does not generate compiled object code. This option saves you
time during the development cycle when you want to iterate rapidly between modifying
MATLAB code and generating C code and are mainly interested in inspecting the C code.

For more information and a complete list of compilation options, see codegen.

-report Generate Code Generation Report

Use the -report option to generate a code generation report in HTML format at compile
time to help you debug your MATLAB code and verify that it is suitable for code
generation. If the -report option is not specified, codegen generates a report only if
compilation errors or warnings occur.

The code generation report contains the following information:

• Summary of compilation results, including type of target and number of warnings or
errors

• Target build log that records compilation and linking activities
• Links to generated files
• Error and warning messages

For more information, see codegen.

3 Best Practices for Working with MATLAB Coder

3-2

Testing MEX Functions in MATLAB
To prepare your MATLAB code before you generate C code, use codegen to convert your
MATLAB code to a MEX function. codegen generates a platform-specific MEX-file,
which you can execute within the MATLAB environment to test your algorithm.

For more information, see codegen.

 Testing MEX Functions in MATLAB

3-3

Comparing C Code and MATLAB Code Using Tiling in the
MATLAB Editor

Use the MATLAB Editor's left/right tile feature to compare your generated C code to the
original MATLAB code. You can easily compare the generated C code to your original
MATLAB code. In the generated C code:

• Your function name is unchanged.
• Your comments are preserved in the same position.

To compare two files, follow these steps:

1 Open the C file and the MATLAB file in the Editor. (Dock both windows if they are
not docked.)

2
Select Window > Left/Right Tile (or the toolbar button) to view the files side
by side.

The MATLAB file kalman02.m and its generated C code kalman02.c are displayed in
the following figure.

3 Best Practices for Working with MATLAB Coder

3-4

Using Build Scripts
If you use codegen to generate code from the command line, use build scripts to call
codegen to generate MEX functions from your MATLAB function.

A build script automates a series of MATLAB commands that you want to perform
repeatedly from the command line, saving you time and eliminating input errors. For
instance, you can use a build script to clear your workspace before each build and to
specify code generation options.

Here is an example of a build script to run codegen to process lms_02.m:

close all;
clear all;
clc;

N = 73113;

codegen -report lms_02.m ...
 -args { zeros(N,1) zeros(N,1) }

where:

• close all deletes figures whose handles are not hidden. See close in the MATLAB
Graphics function reference for more information.

• clear all removes variables, functions, and MEX-files from memory, leaving the
workspace empty. It also clears breakpoints.

Note Remove the clear all command from the build scripts if you want to preserve
breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving you a
“clean screen.”

• N = 73113 sets the value of the variable N, which represents the number of samples
in each of the two input parameters for the function lms_02

• codegen -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls
codegen to generate C code for file lms_02.m using the following options:

• -report generates a code generation report

 Using Build Scripts

3-5

• -args { zeros(N,1) zeros(N,1) } specifies the properties of the function
inputs as a cell array of example values. In this case, the input parameters are N-
by-1 vectors of real doubles.

3 Best Practices for Working with MATLAB Coder

3-6

Check Code Using the MATLAB Code Analyzer
The code analyzer checks your code for problems and recommends modifications. You can
use the code analyzer to check your code interactively in the MATLAB Editor while you
work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.
2 In the Preferences dialog box, select Code Analyzer.
3 In the Code Analyzer Preferences pane, verify that Enable integrated

warning and error messages is selected.

 Check Code Using the MATLAB Code Analyzer

3-7

Separating Your Test Bench from Your Function Code
If you use codegen to generate code from the command line, separate your core
algorithm from your test bench. Create a separate test script to do the pre- and post-
processing such as loading inputs, setting up input values, calling the function under
test, and outputting test results.

3 Best Practices for Working with MATLAB Coder

3-8

Preserving Your Code
Preserve your code before making further modifications. This practice provides a fallback
in case of error and a baseline for testing and validation. Use a consistent file naming
convention. For example, add a 2-digit suffix to the file name for each file in a sequence.
See “File Naming Conventions” on page 3-10 for more details.

 Preserving Your Code

3-9

File Naming Conventions
Use a consistent file naming convention to identify different types and versions of your
MATLAB files. This approach keeps your files organized and minimizes the risk of
overwriting existing files or creating two files with the same name in different folders.

For example, the file naming convention in the Generating MEX Functions getting
started tutorial is:

• The suffix _build identifies a build script.
• The suffix _test identifies a test script.
• A numerical suffix, for example, _01 identifies the version of a file. These numbers

are typically two-digit sequential integers, beginning with 01, 02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.
• The file test_03.m is the third version of the test script for this tutorial.

3 Best Practices for Working with MATLAB Coder

3-10

